The convex approximation property of Banach spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Lidskii Trace Property and the Nest Approximation Property in Banach Spaces

For a Banach space X, the Lidskii trace property is equivalent to the nest approximation property; that is, for every nuclear operator on X that has summable eigenvalues, the trace of the operator is equal to the sum of the eigenvalues if and only if for every nest N of closed subspaces of X, there is a net of finite rank operators on X, each of which leaves invariant all subspaces in N , that ...

متن کامل

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

متن کامل

The Geometry of Convex Transitive Banach Spaces

Throughout this paper, X will denote a Banach space, S ̄S(X ) and B ̄B(X ) will be the unit sphere and the closed unit ball of X, respectively, and ' ̄'(X ) will stand for the group of all surjective linear isometries on X. Unless explicitly stated otherwise, all Banach spaces will be assumed to be real. Nevertheless, by passing to real structures, the results remain true for complex spaces. Recal...

متن کامل

Convex Games in Banach Spaces

We study the regret of an online learner playing a multi-round game in a Banach space B against an adversary that plays a convex function at each round. We characterize the minimax regret when the adversary plays linear functions in terms of the Rademacher type of the dual of B. The cases when the adversary plays bounded and uniformly convex functions respectively are also considered. Our resul...

متن کامل

Convex Optimization on Banach Spaces

Greedy algorithms which use only function evaluations are applied to convex optimization in a general Banach space X . Along with algorithms that use exact evaluations, algorithms with approximate evaluations are treated. A priori upper bounds for the convergence rate of the proposed algorithms are given. These bounds depend on the smoothness of the objective function and the sparsity or compre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2011

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2011.01.059